- Si la integral es de la forma: $\displaystyle \int f(x,\sqrt{a^2-x^2})dx$, donde a > 0 y f representa una función de dos variables, entonces, mediante la sustitución: $\displaystyle x=asen(t); dx=acos(t)dt$, dicha integral se transforma a una de la forma: $\displaystyle \int (anse(t), a cos(t))dt$ a $\displaystyle cos(t)dt$, puesto que:
$\displaystyle \sqrt{a^2-x^2}=\sqrt{a^2-a^2sen^2(t)}=a\sqrt{1-sen^2(t)}=a cos(t)$
Ejemplo. - Calcular: $\displaystyle \int \frac{x^3dx}{\sqrt{2-x}}$
En este caso usaremos la sustitución: $\displaystyle x=\sqrt{2}sen(t)$ con lo cual $\displaystyle dx=\sqrt{2}cos(t)dt$, y entonces:
$\displaystyle \int \frac{x^3dx}{\sqrt{2-x^2}}=\int \frac{(\sqrt{8}sen^3(t))(\sqrt{2}cos(t))}{\sqrt{2-2sen^2(t)}}=\sqrt{8}\int \frac{sen^3(t)cos(t)}{cos(t)}dt$
$\displaystyle =\sqrt{8}\int sen^3(t)dt=\sqrt{8}\int (1-cos^2(t))sen(t)dt$
$\displaystyle =\sqrt{8}\left [ -\int d(cos(t))+\int cos^2(t)d(cos(t)) \right ]$
$\displaystyle =\sqrt{8}\left ( -cos(t)+\frac{cos^3(t)}{3} \right )+c$
$\displaystyle =-\sqrt{8}cos(t)+\frac{\sqrt{8}}{3}cos^3(t)+c$
De $\displaystyle x=\sqrt{2}sen(t)$, se sigue que: $\displaystyle sen(t)=\frac{x}{\sqrt{2}}$ y en consecuencia: $\displaystyle t=arcsen(\frac{x}{2})$ luego:
$\displaystyle \int \frac{x^3}{\sqrt{2-x^2}}dx=-\sqrt{8}cos\left ( arcsen\left ( \frac{x}{\sqrt{2}} \right ) \right )+\frac{\sqrt{8}}{3}\left [ cos\left ( arcsen\left ( \frac{x}{\sqrt{2}} \right ) \right ) \right ]^3$
$\displaystyle =-\sqrt{8}\sqrt{1-\frac{x^2}{2}}+\frac{\sqrt{8}}{3}\left [ \sqrt{1-\frac{x^2}{2}} \right ]^3+c$
$\displaystyle =-2\sqrt{2-x^2}+\frac{1}{3}\sqrt{(2-x^2)^3}+c$
En esta ultima parte hemos utilizado la formula: $\displaystyle cos(arcsen(x))=\sqrt{1-x^2}$
- Si la integral es de la forma. $\displaystyle \int f(x,\sqrt{a^2+x^2})dx; a>0$, mediante la sustitución $\displaystyle x=atan(\Theta ); dx=asec^2(\Theta )d\Theta$ dicha integral se transforma en una de la forma: $\displaystyle \int f(atan(\Theta) , asec(\Theta ))asec^2(\Theta )d\Theta$, puesto que:
$\displaystyle \sqrt{a^2+x^2}=\sqrt{a^2+a^2tan^2(\Theta )}=a\sqrt{1+tan^2(\Theta )}=asec(\Theta )$
Con la sustitución utilizada la integral se calcula fácilmente.
- Si la integral es de la forma $\displaystyle \int f(x,\sqrt{x^2-a^2})dx; a>0$ mediante la sustitución: $\displaystyle x=asec(\Theta ); dx=asec(\Theta )d\Theta$, dicha integral se transforma en una de la forma: $\displaystyle \int f(asec(\Theta ), atan(\Theta ))asec(\Theta )d\Theta$, puesto que: $\displaystyle \sqrt{x^2-a^2}=\sqrt{a^2sec^2(\Theta )-a^2}=a tan( \Theta )$.
- Calcular: $\displaystyle \int x^2\sqrt{x^2-a^2}dx$
$\displaystyle \int x^2\sqrt{x^2-a^2}dx=\int a^2sec^2(\Theta )\sqrt{a^2sec^2(\Theta )-a^2}asec(\Theta )tan(\Theta )d\Theta$
$\displaystyle =a^4\int sec^3(\Theta )tan^2(\Theta )d\Theta =a^4\int sec^3(\Theta )(sec^2(\Theta )-1)d\Theta$
$\displaystyle =a^4\left [ \int sec^5(\Theta )d\Theta -\int sec^3(\Theta )d\Theta \right ]$
$\displaystyle =a^4\left [ \frac{1}{4}tan(\Theta )sec^3(\Theta ) +\frac{3}{8}tan(\Theta )sec(\Theta )+\frac{3}{8}ln\left | sec(\Theta )+tan(\Theta ) \right |-\frac{1}{2}tan(\Theta )sec(\Theta )-\frac{1}{2}ln\left | sec(\Theta ) +tan(\Theta )\right |\right ]+c$
$\displaystyle =a^4\left [ \frac{1}{4} tan(\Theta )sec^3(\Theta )-\frac{1}{8}tan(\Theta )sec(\Theta )-\frac{1}{8}ln\left | sec(\Theta )+tan(\Theta ) \right |\right ]+c$
Como: $\displaystyle x=asec(\Theta )\Rightarrow sec(\Theta )=\frac{x}{a}$, se sigue que: $\displaystyle tan(\Theta )=\frac{\sqrt{x^2-a^2}}{a}$. se arma el triangulo rectángulo y se tiene que:
$\displaystyle \int x^2\sqrt{x^2-a^2}dx=a^4\left \{ \left [ \frac{1}{4}\frac{\sqrt{x^2-a^2}}{a}\frac{x^3}{a^3} \right ]-\frac{1}{8}\frac{\sqrt{x^2-a^2}}{a}\frac{x}{a} -\frac{1}{8}ln\left | \frac{x}{a}+\frac{\sqrt{x^2-a^2}}{a} \right |\right \}+c$
$\displaystyle =\frac{1}{4}x^3\sqrt{x^2-a^2}-\frac{a^2}{8}x\sqrt{x^2-a^2}-\frac{a^4}{8}ln\left | \frac{x+\sqrt{x^2-a^2}}{a} \right |+c$
No hay comentarios.:
Publicar un comentario