En esta parte quere,ps calcular integrales indefinidas de la forma:
- $\displaystyle \int sen(ax+b)sen({a}'x+{b}')dx$
- $\displaystyle \int sen(ax+b)cos({a}'x+{b}')dx$
- $\displaystyle \int cos(ax+b)cos({a}'x+{b}')dx$
- $\displaystyle sen(A)sen(B)=\frac{1}{2}\left [ cos(A-B)-cos(A+B) \right ]$
- $\displaystyle sen(A)cos(B)=\frac{1}{2}\left [ sen(A-B)+sen(A+B) \right ]$
- $\displaystyle cos(A)cos(B)=\frac{1}{2}\left [ cos(A-B)+cos(A+B) \right ]$
Ejemplo:
- calcular: $\displaystyle \int sen(2x)cos(3x)sen(5x)dx$
$\displaystyle cos(x)cos(3x)sen(5x)=\frac{1}{2}[cos(2x)+cos(4x)]sen(5x)$
$\displaystyle cos(x)cos(3x)sen(5x)=\frac{1}{2}[cos(2x)sen(5x)+cos(4x)sen(5x)$
$\displaystyle cos(x)cos(3x)sen(5x)=\frac{1}{4}[sen(5x-2x)+sen(2x+5x)+sen(5x-4x)+sen(5x+4x)]$
$\displaystyle cos(x)cos(3x)sen(5x)=\frac{1}{4}[sen(3x)+sen(7x)+sen(x)+sen(9x)]$
En consecuencia:
$\displaystyle \int cos(x)cos(3x)sen(5x)=\int \frac{1}{4}[sen(3x)+sen(7x)+sen(x)+sen(9x)]dx$
$\displaystyle = \frac{1}{4}\left [\int sen(3x)dx +\int sen(7x)dx+\int sen(x)dx+\int sen(9x)dx\right ]$
$\displaystyle = \frac{1}{4}\left [ -cos(x)-\frac{1}{3}cos(3x)-\frac{1}{7}cos(7x)-\frac{1}{9}cos(9x) \right ]+c$
No hay comentarios.:
Publicar un comentario